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All physical systems should be described, as had been marked by von Neumann, via
quantitative parameters and qualitative properties, such as causality, mass-spectrality,
strict interval of work and so on, which are completely present or are absent, i.e. are rep-
resentable by projectors. The description of such properties by equations of restriction
for response functions, via projectors of the restricted domain (support) of parameters,
is offered. Their Fourier transformations directly lead to spectral representations and
dispersion relations (DRs) without preliminary study of analiticity. The offered method
explaines their accordance to equations of motion. Among other examples the rela-
tivistic DRs are established and some their features are studied including possibilities
and limits of instantaneous transfer of excitations. The DR for particle scattering on
a fixed point-type scatterer is established via kinematics only, without definition of
interactions type; it leads to determination of the unique numerical parameter, which
can be suggested as a candidate on the role of universal bare charge of SUSY, etc.
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PACS numbers: 02, 03.65.Ta, 11.10.Cd, 11.55.Fv.

1. INTRODUCTION

According to the immortal “Mathematical Foundation of Quantum Mechan-
ics” of John von Neumann (1932, Ch. 3.5) the complete description of physical
systems must contain:(a) a set of quantitative characterizations (energy, positions,
velocities, charges, etc.) and (b) a set of properties of states2 (causality, restriction
on the spectra of self energies, existence or absence of certain strictly isolated
energy bands, strict combination of some quantative characteristics, etc.)

1 Racah Institute of Physics, Hebrew University, Jerusalem, Israel; e-mail: mark perelman@mail.ru
2 In the German original text “Eigenschaft,” in the Russian translation “alternative property” that seems

closer to the initial term. Its more general philosophical sense we do not consider, see e.g. Stanford
Encyclopedia of Philosophy http://www.seop.leeds.ac.uk/archives/fall2000/entries/properties/
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Formal relations dictated by the general principles of science (causality, laws
of conservations, principles of thermodynamics) are of especial importance, in-
cluding their prognostic role, at development of any theory. In the set of these
relations are the Kramers-Kronig dispersion relations (DRs) and their generaliza-
tions (the general introduction and an initial history of DRs (Toll, 1956), their
generalizations and applications in the quantum field theory (Bogoliubov and
Shirkov, 1982), in the nonrelativistic physics (Nussenzweig, 1972)). But this de-
veloping had been based on investigations of analytic peculiarities of examined
magnitudes that are not directly connected with properties of system in the von
Neumann sense, and therefore they could obscure the physical context of these
properties. As the analyticity was simply established at such way for energy only,
this approach became very complicating even for one-particle functions with tak-
ing into account its momentum, in the relativistic theory or in the theory of space
dispersion.

For the return to the more logical, as it seems, way we developed the direct use
of the von Neumann statement for one particle relativistic functions (Perel’man,
1966). This approach was generalized on many-point functions of the axiomatic
field theory (Perel’man, 1969) and on nonlinear systems (Perel’man, 1971). Some
mathematical problems were considered in Perel’man (1976). As the relativistic
DRs are very complicated and even intricated, some their approximated forms are
given in Perel’man and Englman (2000).

Such DRs, despite of their mathematical complexity, are crucial and their
role become decisive at consideration of some basic problems of the theory. So,
in Perel’man (2005) on the base of the general theory of DRs, i.e. due the von
Neumann conjecture, the possibilities of instantaneous transfer of excitations in
the limits of near field and at very strict requirements to the energy spectra were
established. These results, had completely described the recent observations of
“superluminal” phenomena (e.g. reviews (Chiao and Steinberg, 1998; Milonni,
2002; Nimtz, 1997; Nimtz and Heitman, 1997; Recami, 2001; Steinberg, 2002))
and are confirmed by another approach also Perel’man (submitted).

Now the general approach to the von Neumann point of view is revised
and generalized. With this purpose in the Section 2 the original idea of von
Neumann is described and then in the Section 3 its strict mathematical expression
is given, i.e. the adequate theory is constructed that allows the direct comparison of
abstract properties of system with the admissible spectral representations. These
representations have different forms including their conformity to equations of
motion and Green functions. Some further possible generalizations are mentioned
also.

In the Section 4 these constructions are applied to the simplest, one-
dimensional cases, the Kramers–Kronig DRs and sampling theorems. On this
base the special DRs for refractive indices are established. In the Section 5 corre-
sponding many-point nonrelativistic DRs are considered.
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The Section 6 is devoted to the 4-D relativistic DRs, their partial cases and so
on. It will allow the continuing of analogue between the energy-momentum and
time-space descriptions of scattering (Perel’man, submitted), they can be applied
to generalizations of the Kramers–Kronig DRs by taking into account features of
space dispersion also. In the Section 7 the partial integral representations of the
4-D covariant DRs are considered; their analyses allow to establish possibility and
limits of nonlocal interactions, more precisely of the instantaneous transferring,
close to limits of uncertainty principles, but slightly bigger them.

In the Section 8 the DR corresponding to the nonrelativistic Schrödinger
equation is established on the base of exclusively kinematic considerations. This
DR depends only on the single non-dimensional numerical parameter that is
equally corresponding, as can be assumed, to all types of interactions. Therefore
it seems interesting to compare this value with a hypothetical bare charge of SUSY,
to which would approach the charges of all type interactions at such extremely
high energies when all vacuum effects are vanishing, e.g. Weinberg (2000).

All considerations are briefly summed in the Conclusions.

2. THE STATEMENT OF VON NEUMANN

The formal theory of quantum properties can be constructed in such way.
Let us consider the complete Hilbert space of physical states H. Each its

closed subspace M specifies definite property of the considered system: the entire
space is the sure property, and the orthogonal complement M⊥ specifies the
negation of the property. Two different properties define two subspaces M and
N , therefore the four intersections M ∩ N , M⊥ ∩ N , M ∩ N⊥, and M⊥ ∩ N⊥ are
each subspaces. If M and N are compatible, the disjunction of M and N is also
defined and is the direct sum of the first three of the four subspaces; if M and
N are noncompatible and their conjunction is impossible, then the properties are
mutually exclusive.

Between subspaces of H and orthogonal projection operators (projectors,
idempotent operators) there is a one-to-one correspondence: the subspace is the
range of the projector P with P 2 = P . Therefore the projections I or 0 correspond
to the sure property or to the impossible property, and the projection P ⊥ = I −
P corresponds to the negation of the property specified by P . The properties
associated with P and Q are compatible if P and Q commute and the projection
PQ = PQ represents the conjunction, when the projection PQ + PQ⊥ + P ⊥Q =
P + Q − PQ represents the disjunction. If PQ = 0, the properties are compatible,
i.e. they are mutually exclusive, and the disjunction is represented by the sum
P + Q.

Each property P provides a specification of a state probability p(P ). If
there are projections P1, . . . , Pn onto orthogonal subspaces with P1 + . . . + Pn =
I , the additivity requirement is that p(P1) + . . . + p(Pn) = 1. Note that it is
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not necessarily assumed that every property can be measured or that all these
probabilities are empirically meaningful: it is defined a mathematical specification
of probabilities for all properties, whether they have physical meaning or not.

A pure state is determined by a unit vector of the Hilbert space ψ , the
projection on the one-dimensional subspace spanned by ψ is P = ψ 〈ψ, . . . 〉.
The probability of a property P when the system is in a pure state is given by
the inner product p(P ) = 〈ψ,Pψ〉 = ‖Pψ‖2 = tr(PP ), which is between 0 and
1. In general a state is defined as a pure state or as a randomized family of pure
states.

All it shows the possibility of physical interpretation of properties by the
geometry of corresponding projections.

3. MATHEMATICAL CONCRETIZATION OF THE STATEMENT

For better comprehension of suggested method we decompose it onto some
subsections, in which will be given the general approach, its variants and some
further perspectives will be mentioned.

3.1. Equations of Restrictions and their Integral Convolutions

If the conditions of system existence are determined by the precise ratio of
parameters in the N -dimensional space of arguments, the corresponding projector
δP , which can be considered as an atom of the Boolean algebra of projectors,
must single out the hyperplane. If the admissible connection of arguments is
extended onto the whole N -volume, such connection can be named non-holding
and corresponding condition for the parameters would be named the equation of
restriction (the notion of retaining liaisons in quantum theory was widely used
by Dirac (1964)). Such subdivision is close to the more traditional in mechanics
division of systems on holonomic and nonholonomic.

Let us consider more concretely a class of functions {f (x)}, x ∈ Rn or x ∈ En,
all of which can be attributed to two sublasses, {f1(x)} and {f2(x)}, such that within
the compact support S can be marked out subsupports characterized presence and
absence of examined property:

suppf1(x) = S1; suppf2(x) = S2. (3.1)

These subsupports have, in general, common borders. Therefore they can be
partially overlapped and their projectors can be non-orthogonal:

S = S1 + S2 − S1 ∩ S2, P1 + P2 − δP = 1, (3.2)

where δP = P1P2.
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Orthogonal projectors can be introduced by exclusion a common part (com-
mon boundary) of supports:

P 1 = P1 − δP ; P 2 = P2 − δP, P 1P 2 = 0. (3.3)

With such truncated projectors can be determined the relation:

P 1,2f (x) = f 1,2(x), (3.4a)

the set {f 1,2(x)} ⊆ {f1,2(x)}, i.e. it corresponds to the properties described by S1,2,
but with possible absence of characteristics of boundaries.

By multiplication on projectors P 1 or P 2 the relation (3.4) can be rewritten
as the equation of restrictions or as the condition of orthogonality:

f 1(x) = P 1 f 1(x); P 2f 1(x) = 0. (3.4b)

The functions with a support on the boundary,

supp δf (x) = S1 ∩ S2; δf (x) = δP f (x) ≡ P1P2f (x), (3.5)

can be calculated or estimated separately and then added to both functions f 1(x)
and f 2(x). Both conditions can be written together as the equations:

P1(f − δf ) = f1 − δf or P2(f1 − δf ) = 0, (3.6)

where we return to initial projectors and which corresponds to subtraction proce-
duries.

The most required is the case when projectors can be expressed via the
Heaviside unit functions, i.e. as θ (Sk(x)). Along with them can be used the sign
functions: sgn(ξ ) = θ (ξ ) − θ (−ξ ) = 2θ (ξ ) − 1 and their generalization on the
multidimension case in the form of the Riesz potentials: sgn(ξµ) → ξµ/ |ξ | (Stein,
1970).

Step functions are not determined on the boundary of supports, i.e. they
correspond to the interior parts of domains. Hence a boundary can be often related
to a space of lower dimension and therefore can be expressed through the delta-
functions,

δf (x) = δ(S1 ∩ S2) f (x), (3.7)

and their derivatives.
If it can be suggested that the considered functions allows the Fourier transfor-

mations (FT, the transformations of other types can be also used) over all variables,
the FT of projectors ̂F[Pi] must be calculated, usually in the sense of generalized
functions, then the corresponding equations of restriction will be represented as
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the integral convolutions:

f 1(k) = ̂Fk[P 1]
⊗

f 1(k); ̂Fk[P 2]
⊗

f 1(k) = 0; (3.8)

δf (k) = ̂Fk[P1P2]
⊗

f (k). (3.9)

(the FT of functions are denoted by the same symbols with different arguments:
x → k, etc.). The determination of projectors shows that

̂Fk[P 1,2] = 1

2
δ(. . . ) ± Q(k), (3.10)

and, correspondingly,

f 1,2(k) = ±2
∫

dqQ(k − q) f 1,2(q) (3.11a)

or

f 1(k) ± f 2(k) = 2
∫

dqQ(k − q){f 1(q) ∓ f 2(q)}. (3.11b)

As f 1 − f 2 = f1 − f2 these equations can be expressed in another forms also.
Note that the duality of (3.11) demonstrates, in general form, the principle of

J. Babinet: the main and additional picture of diffraction and so on are equivalent.
These results can be formulated for functions of Euclidian (Rn) or pseudo-

Euclidian (En) set of variables and of definite classes of integration Lp, provided
existence of integral transformations, as

Theorem 1. A class of functions f (x) ∈ Lp (Rn or En), 0 < p < ∞,
characterized by the compact support Sk , is described, with taking into account
necessary regularizations, by equations of restrictions and/or by the equivalent
to them identities of orthogonality (3.6) and corresponding equations in integral
convolutions of the types (3.8), (3.11).

If the kernel Q(k) is a real function and f (k) is a complex one, the relations
(3.11) allows to express real part of f (k) through the imaginary part or vice
versa. Such relations are named dispersion relations, DRs. If Q(k) is a complex
function, it leads to integral equations connecting both parts of f (k) or to spectral
representations, but we will use in all cases the name “DR” for brevity.

The integral representation (3.9) can be refined if the support δS of examining
class of functions is reduced to hypersurface of lower dimension. For such cases
follows

Theorem 2. The class of functions, which are equal zero outside the hypersurface
δS(x), can be represented after needed regularizations by their FT as

fδS(k) =
∫

dxφ(x) δ[PδS(x)] ei(k,x), (3.12)
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where φ(x) is an arbitrary function non–singular on the borders of support.
Functions (3.12) satisfy the homogenious pseudodifferential equation

PδS(−i∂k) fδS(k) = 0. (3.13)

Function φ(x) and limits of integration can be determined by initial and borderline
conditions.

As a natural generalization of this representation the Green function of non-
homogenious analog of (3.13) can be determined:

G
(±)
δS (x) δ[PδS(x)] = 1. (3.14)

The FT of this function

G
(±)
δS (k) =

∫

dx γ (x) δ±[PδS(x)] ei(k,x), (3.15)

and if xn are roots of the equation PδS(x) = 0, the norms of all γ (xn) are equal 1
or 0, i.e. all γ (xn) are expressed via θ -functions.

3.2. Representations via Green Functions

The different approach for establishment of DRs is based on the general
possibility of decomposition of every function over the set of self-functions of the
problem. Such approach will reveal the principal accordance of DRs and equations
of motion.

Let some function �S(x) = ξ completely covers the supp{f (x)} = PS , when
ξ run along [0,∞),

∫ ∞

0
δ(�S(x) − ξ ) dξ = θ (�S(x)) ≡ PS(x), (3.16)

and can be considered as the symbol of pseudodifferential operator:

�S(−i∂p) f (p) =
∫

dxei(p,x)�S(x) f (x). (3.17)

The FT of this projector can be represented as

PS(p) =
∫

dxei(p,x)PS(x) →
∫ ∞

0
dξ G

(0)
ξ (p), (3.18)

where

G
(0)
ξ (p) =

∫

dxei(p,x)g(x) δ(�S(x) − ξ ) (3.19)

is the Green function of a homogenious equation,

[�S(−i∂p) − ξ ]G(0)
ξ (p) = 0, (3.20)
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represented in the form of Radon transform; g(x) is an arbitrary function nonsin-
gular at borderlines.

Hence the FT of equation of restriction, f (x) = PS(x) f (x), can be presented
in the convolution form:

f (p) = (2π )−n

∫ ∞

0
dξG

(0)
ξ (p)

⊗

p
f (p). (3.21)

It shows, in particular, that

�S(−i∂p)f (p) = (2π )−n

∫ ∞

0
dξ ξG

(0)
ξ (p)

⊗

p
f (p). (3.22)

The possible decomposition

f (p) =
∫ ∞

0
dξ f (p, ξ ), [�S(−i∂p) − ξ ] f (p, ξ ) = 0 (3.23)

shows that functions representing the property S can be considered as the direct
sum of solutions of specific differential equations.

It can be formulated as

Theorem 3. The class of functions with property S can be represented by their total
sum with single Green functions of equation describing this property at partial
choice of parameters, which represent the expansion of arbitrary function over
self-functions of problem. If this equation represents the equation of motion, such
integral convolution allows a specialization of DRs by taking into account the
properties of propagators.

Notice that instead an introduction of additional parameter ξ such coefficient
in �S(x), at changing of which the considered hyperplane run through the whole
volume of needed support, can be used. It reveals the conformity of (3.18) with
the Radon transformation, in which the decomposition goes over natural for the
considered problem hypersurfaces of equations of motion (cf. Gel’fand et al.
(1962) where are introduced artificial orispheres or orbits).

3.3. Functions of Many Variables and their Incomplete Transformation

For functions of many variables the suggested method allows additionally
such interesting possibilities.

Let’s consider the partial FT of (3.6), for example, relative the first (n − 1)
variables of f (x1, . . . , xn). Thus identically

∫

dq1 . . . dqn−1P 2(q1, . . . , qn−1|xn) f 1((k − q)1, . . . , (k − q)n−1|xn) = 0,

(3.24)
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where the non-transformed variable is separated by vertical line. The equality
(3.24) would hold at arbitrary magnitudes of continuous variables ki and xn.
Hence, its integrand should be identically equal zero:

P 2(q1, . . . , qn−1|xn) f 1((k − q)1, . . . , (k − q)n−1|xn) = 0, (3.25)

Here can be underlined an analogue of this transition with a variation of
function (integral) of action for continuous media and transition to the basic
canonical equations with the Lagrangian density.

In view of the fundamental definition ξ × δ(ξ ) = 0 it is evident that if a
function f (ξ ) is non-singular, and its (isolated) zeros in points ξm are not higher
n-th order, the general solution of an algebraic equation P (ξ ) f (ξ ) = 0 with the
known function P (ξ ) has a kind:

f (ξ ) ∼ δ(P (ξ )). (3.26)

Therefore the formal solution of (3.25) can be written down as

f 1(k1, . . . , kn−1|xn)) = φ(k1, . . . , kn−1|xn) δ(P 2(q1, . . . , qn−1|xn)), (3.27)

with arbitrary function φ such that its zeros and poles do not coincide with zeros
of P 2. Thus the δ-function must be decomposed as the function of magnitudes xn

only and if P
(n−1)
2 (ξ ) = 0, P

(n)
2 (ξ ) �= 0, then

δ[P 2(ξs)] =
∑

s

∣

∣P
(n)
2 (ξs)

∣

∣

−1
δ(n−1)(ξ − ξs) →

n
∑

0

∑

s

an,sδ
(n)(ξ − ξs), (3.28)

with arbitrary coefficients an,s that must be determined by other reasons or models.
(Note that (3.27) can be considered as the pointed equation of restriction. The
correspondence between such approach and the theory of residues seems obvious
and enables the substantiation of suggested approach by the more traditional
methods.)

This construction can be formulated as

Theorem 4. If the FT of projector over some variables allows decomposition
on simple multipliers over non-transformed variables, thus transformed functions
have the form (3.27–28) with arbitrary coefficients.

Let’s note that the substitution P ′(x) = 1 − P (x) in the (3.24) leads to the
DRs with participation of partially Fourier transformed functions, which, possibly,
does not have so simple formal solution, but reveals, basically, some correspon-
dence between allowable changes of variables. Thus, the suggested method results
in determination or, at least, in specification of dependence of functions of a re-
searched class on a part of arguments.
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3.4. Additional Possibilities

There are certain possibilities of suggested method which we did not use and
which would be briefly mentioned.

1. Till now we had not used the main property of projectors: P 2(x) = P (x).
This property allows rewriting, for example, the single equation of restric-
tion as

fS(p)=
∫

dq

∫

dq1PS(p − q1)PS(q1 − q) fS(q)

=
⊗2

1
PS(p)

⊗

fS(p). (3.29)

In such form it is a simple identity, but if in the condition of the theorem 3
into FT of different projectors may be inserted different Green functions
or can be used different limits of integration, then these representations
can be usable for description of complicating processes with scattering on
several centres and so on.

Note that such iteration can be continuing infinitely:

fS(x) = lim
N→∞

P N (ϕ(x)) fS(x), (3.30a)

which after transition to the Fourier convolution leads to a formal analog
of the continual integral:

fS(p) = lim
N→∞

⊗N

0

∫

dqn
̂F[P (ϕ(qn − qn−1))] fS(q1), qN → p.

(3.30b)

2. We still did not consider such properties of physical systems as their sym-
metries. The symmetries introduce clarity and sometimes simplifications
into considered DRs, but there is also another and more general possibility.
Let’s show these possibilities.

An operation of symmetry in the quantum theory means the transformation
of vectors in the Hilbert space: �,� ∈ H are transformed into �′, � ′ ∈ H or H′

with preservation of probabilities of all processes:

|(�′, � ′)|2 = (S�, S�)|2 = |(�,�)|2. (3.31)

Superselection rules single out in H coherent subspaces. If an operator S

reflects one subspace on another or on the itself, then in accordance with the
Wigner theorem (e.g. Streater and Wightman, 1964) it can be only unitarily or
antiunitarily, at that it is an operator of complete or partial isometry.
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Let’s consider as an example the Lorentz transformations. Their covariance
in the H means that

(�,�)H = (��,��)�H . (3.32)

As � is the operator of partial isometry, �+� = P� is the projector and (3.32)
can be rewritten as

||P��|| = ||�|| , (3.33)

i.e. as the equation of restrictions in the weak topology. The transition to FT leads,
naturally, to DRs in the weak topology, which we do not consider here.

Underline that such DRs can relate to a set of objects as the operator PF =
F+F of FT can also be considered as the operator of symmetry. The operator of
conjugation can be presented as I = UC, where U is an operator of involution
and C is an operator of the Hermite conjugation. Such generalization allows a
consideration of such complicated combinations as the CPT symmetry. Moreover,
on this base can be considered, generally speaking, the gauge transformations also.

4. ONE-DIMENSIONAL RELATIONS

There are two types of relations of considered type: the restrictions on half-
axis and restrictions on finite interval. The first type leads to the Kramers–Kronig
DRs (possibilities of their generalization on the space dispersion phenomena is
mentioned in the Section 6) and the second type leads to the sampling theorems
and their generalizations. (Sampling theorems have a big and very tangled history
(Jerri, 1977; Läke, 1999), in these articles are cited also their numerous applications
in physics, etc.).

4.1. Kramers–Kronig Dispersion Relations

Usual deduction of DRs for transient (response) functions is executing by
such scheme. If the incoming and outlet signals or components of fields strengths
(possible tensor indices are omitted) are connected by the linear relation:

O(t, r) =
∫

dt ′dr′ R(t − t ′; r − r′) I (t ′, r′) ≡ R(t ; r)
⊗

t,r
I (t, r), (4.1)

the principle of (primitive) causality requires the strict execution of the condition:
R(t ; r) = 0 at t < 0 (this condition does not touch its magnitude at t = 0). If
the existence of partial FT of R(t ; r) can be assumed, then R(ω, r) is an analytic
function in the upper half-plane and, in accord with the famous Titchmarsh theorem
95 (Titchmarsh, 1948), satisfies the Hilbert relations.
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But the equation (3.8) with P 1,2 = θ (±t) and f (k) → R(ω, r) we can write
without examination of analitical features:

θ (−t)R(t ; r) = 0. (4.2)

Hence its FT over t gives

R(ω, r) = 1

πi
P

∫ ∞

−∞

dη

ω − η
R(η, r), (4.3)

where P is the symbol of the Cauchy principal value of integral (below it will
be omitted). For transition to the Kramers–Kronig DRs the symmetrization of
functions must be taken into account.

The formal differentiation of (4.2), i.e. the assumption about the existence
and physical sense of derivatives of response functions, leads to the relations:

θ (−t)R(n)(t ; r) = −
n

∑

k=0

δ(k)(t)R(n−k)(t = 0; r), (4.4)

where, for example, at transient processes in electrical circuits n = 2, R′(t = 0)
and R′′(t = 0) characterize variations of voltage on capacitors and of current in
inductors, correspondingly, i.e. they describe the inertial features of circuits.

The FT of (4.4) means executing of such DR for arbitrary n ≥ 0:

ωnR(ω) = 1

πi

∫ ∞

−∞
dη

1

ω − η
ηnR(η, r) − 2 i−n

n
∑

k=0

(iω)kR(n−k)(t = 0), (4.5)

additional terms of which can describe several inertial features of media.
Note that the condition (4.2) allows the substitution: R(ω) → tMR(t) with

arbitrary non-negative M , even non-integer. Such substitution leads to the DRs
(4.3) for derivatives R(M)(ω), but without additional substraction terms which can
be reestablished, if needed, by subsequent integration. Such DRs represent the
smoothed parameters of considered processes. Along with such substitution some
others are also possible, so, for example, into these relations can be inserted FT of
ln[1 + R(t)].

However the basic relation (4.1) allows the analyses of transient characteris-
tics, e.g. the components of dielectric susceptibility εij (t, r), but as the index of
refraction N (ω) = √

ε(ω), the direct use of considered procedure is, in principle,
impossible, although it is often suggested and used.

For these reasons we consider more general approach to such problems. So,
if the distance between the incoming and outlet points of signal is fixed,

O(t, x + L) =
∫

dt ′R(t − t ′; L)I (t ′, x), (4.6)
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the condition of general causality (4.2) can be rewritten as

θ (−t)R(t + L/c; L) = 0. (4.7)

Let’s, for simplicity, assume that the divergence of transferred signal is neglected.
If an intermediate medium is uniform and continuous, it can be considered as
systems of layers with neglecting reflections on their borders, and therefore it can
be proposed that the FT of response functions exponentially depends on distances:

R(ω; L) =
∫

dteiωtR(t ; L) = exp(−ϕ(ω)L) (4.8)

and R(ω; L = 0) = 1; complex functions ϕ(ω) = ϕ1 + iϕ2 can depend on wave
numbers, structure of medium, intensity of light, external fields, but all these
dependences can be here omitted. In line with the common physical reasonings
ϕ1 must be identified with the coefficient of absorption and just therefore ϕ2,
correspondingly, must be proportional to the index of refraction: ϕ(ω) → κ(ω) +
in(ω).

The substitution of (4.8) into the DR (4.3), decomposition of exponents in
both sides over L and equating of terms with equal degrees of L lead, in particular,
to the Kramers–Kronig relations for the index of refraction:

n(ω) − 1 = 2

π

∫ ∞

0

ηdη

ω2 − η2
κ(η). (4.9)

The integration of (4.9) in the infinite limits leads to the sum rules for optical
parameters of scatterers:

∫ ∞

−∞
dω(n(ω) − 1) = 0, (4.10a)

established in Saslow (1970); Altarelli et al. (1972).
Terms of exponent expansion at L2 lead to the DR for ε(ω) = ϕ(ω)2, other

terms of decomposition give more complicate relations. As the generalization of
(4.10) they lead to the sum rules:

∫ ∞

−∞
dω ωm(n(ω) − 1)m = 0, (4.10b)

i.e. to so named superconvergent rules for indices of refraction, which were
deduced in Altarelli and Smith (1974). Our deduction evidently demonstrates an
approximate character of these relations and gives possibilities of their refinements.

As our deduction is not connected with the Cauchy theorem, i.e. with the
closing of integration contour, it can be applied, in principle, equally to passive
and active systems. It means that the Kramers–Kronig relations do not depend
themselves from the condition of passivity (cf. Wang, 2002).
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Notice that unlike the usual deduction of DRs the proposed method allows
the determination of DRs for non-uniform media with variable index of refraction
n(x). For this aims by the substitution

ϕ(ω)L →
∫ L

0

∂

∂x
ϕ(ω, x) dx (4.11)

in the response function we shall come to DRs for corresponding integrals instead
index of refraction.

4.2. Sampling Theorems

If the signal duration is strictly limited by the interval (−T , T ), i.e. the
response function f (t) is equal zero at |t | > T , this condition can be recorded as
the equation of restrictions or of orthogonality:

f (t) = θ (T 2 − t2) f (t) or θ (t2 − T 2) f (t) = 0. (4.12)

Their FT leads to the Duhamel integral:

f (ω) = 1

π

∫

dη

η
f (ω − η) sin T η, (4.13)

which expresses the value of real function in one point via its values in whole line.
Usually there are used the notation sin ξ/ξ = sincξ .

By transformation with the Fourier series instead the integral, possible in
view of increasing convergences, the series becomes

f (ω) = 1

πT

∑

f (ηk) sin T (ηk − ω)/(ηk − ω). (4.14)

This expression, named usually the Shannon theorem, allows signals reconstruc-
tion by a little number of counts and is widely used in the information theory,
radioscience, etc. It can be considered as the finite interval DR.

With the substitution (t, ω) → (x, k) such integrals or sums naturally de-
scribe wave transferring through a slit, by introduction of the sum of projectors
with different space location they can be adopted to consideration of interfer-
ence pictures, etc. The generalization of this method on a multidimensional cases
seems evident. Note that at definite symmetry of problem the more suitable trans-
formation can be used. So, at the wave transfer through circular hole the Bessel
transformation will the most adequate, in the 3-D case the Gabor series are useful.

The differentiation of (4.12) leads, as in the case of (4.5), to the taking into
account the boundary conditions and their features.

If the transparence of sample is different on various frequencies of the used
band, then such equation can be written:

O(ω) = θ (ω0 − |ω|)Q(ω)I (ω), (4.15)
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where Q(ω) is the function of transparency.
There can be considered many types of various devices. So if Q(ω) = ω0 − ω

and for the sake of simplicity ω0 = 1, the transformation of (4.15) leads to the so
named Watson transformation:

f (t) = (1/π2)
∫

dt ′ F (t ′ − t) t ′−2 sin2(t ′/2) (4.16)

that converges rapidly (4.13) and requires lesser number of samplings. The best
result becomes for diffraction on a hole with Q(r) in the form of the Gauss (normal)
distribution: the diffracted rays would be absent at all, such method is named the
apodisation in optics.

5. MULTICHANNEL DEVICES AND MULTIPHOTON PROCESSES

There are many attempts of DRs generalization on the higher order response
functions including multiphoton processes (e.g. Peiponen et al. 2004) and refer-
ences therein). But they did not lead to practically usable results.

Let’s consider ab initio possibilities of their deduction for a nonlinear system:

O(t) =
∫

dt1 · . . . · dtN f (t − t1, . . . , t − tN ) I1(t1) · . . . · I2(tN ). (5.1)

Necessary and sufficient conditions of general causality of the system are expressed
by the system of N equations of restrictions:

f (t1, . . . , tN ) = θ (tk) f (t1, . . . , tN ) {k = 1, . . . , N}. (5.2)

Possible compositions of these equations lead to representations:

f (t1, . . . , tN ) = 1

N

N
∑

1

θ (tk) f (t1, . . . , tN ); (5.3)

f (t1, . . . , tN ) = 1

N (N − 1)

N
∑

i �=k

θ (ti)θ (tk) f (t1, . . . , tN ); . . .

f (t1, . . . , tN ) =
N

∏

1

θ (tk) f (t1, . . . , tN ). (5.4)

The substitutions θ (tk) = 1 − θ (−tk) show that the last relation represents
the sum of all preceding ones. Each of them, except the last one, is necessary, but
can be non-sufficient for complete fulfilment of the causality requirements.

These representations are very complicated, but their analyses can begin with
the simplest one (5.3) with further checking by other relations.
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The most complete and the most complicate representation (5.4) can be
transformed in a more compact form (Perel’man, 1971). Let’s consider for this
purpose its FT:

f (ω1, . . . , ωN ) =
∫ N

∏

1

dηk δ+(ωk − ηk) f (η1, . . . , ηN ). (5.5)

For processes in the pure monochromatical field the substitution of type

f (η1, . . . , ηN ) → f (η, J )
∏

δ(η − ηk) (5.6)

or with more real frequencies distributions are possible. It will leads to definite
series which can be, in principle, summed.

If f (t1, . . . , tN ) is real, such representation for its FT, by taken into account
the conditions of symmetry, can be written:

Re f (ω1, . . . , ωN ) = (2πi)nρ1
(

ω2
1, . . . , ω2

N

)

, (5.7a)

Im f (ω1, . . . , ωN ) = (−2πi)n
∏

k

sgn(ωk)ρ2
(

ω2
1, . . . , ω2

N

)

. (5.7b)

With the Green function of oscillator, G(±)
0 (ω, q2) = (ω2 − q2 ± iω→0), the

multi-frequencies DRs can be represented as a multidimensional generalization
of the known Lehmann spectral representation for fermions (e.g. Bogoliubov and
Shirkov, 1982):

f (ω1, . . . , ωN ) =
N

∏

1

∫ ∞

0
dq2

k G
(−)
0

(

ωk, q2
k

)

×
{

ρ1
(

q2
1 , . . . , q2

N

) + i
∏

k

sgn(ωk)ρ2
(

q2
1 , . . . , q2

N

)

}

. (5.8)

This representation allows to construct and check different models.
More simple and practical seems such approximations: the transition to new

N independent variables in (5.4): T = (t1 + · · · tN )/N and {τi,k = ti − tk} with
decomposion of DR over τi,k as functions of J and ω. More generally to these
DRs can be applied the condition or property of temporal compatibility of signals
or photons. Such property can be expressed by the factor g(τi,k|τ0), where τ0 is
the waiting time of device or the duration of keeping of energy of first photons,
virtually absorbed by scatterer, till absorption of subsequent ones. (Notice that
this function represents in some sense an analog of the Bogoliubov function of
switching on interaction (Bogoliubov and Shirkov, 1982; Perel’man, submitted).)
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It leads to the substitution:

f (t1, t2) → fτ (t1, t2) = g(τ1,2|τ0) f (t1, t2) (5.9a)

with the FT

f (ω, η) → fτ (ω, η) =
∫

dξ g(ξ |τ0) f (ω − ξ, η + ξ ) (5.9b)

in the DR (5.3) and others.
For the switching function several forms can be suggested, the simplest

among which are

g1(t |τ ) = θ (τ 2 − t2), g2(t |τ ) = exp(− |t | /τ ), g3(t |τ ) = exp(−t2/τ 2).
(5.10)

If for technical devices τ can be a constant magnitude, in multiphoton pro-
cesses τ = τ (ω, J ): it depends on the field power J and till definite threshold
value τ ∼ 1/J , at bigger J it can be assumed that τ ∼ 1/ω.

Note that the usage of g1 leads to a peculiar symbiosis of Kramers–Kronig
DRs and sampling theorem. But they all do not allow, in general case, such
division of relations where the right side depends on real or imaginary parts only.
Therefore these relations can have lesser applications than one-particle DRs or
sampling theorems.

The most interesting feature of corresponding DRs consists in its dependence
on τ : it can give possibility of examining models or calculations of τ (ω, J ), i.e.
the duration of interaction.

6. EQUATIONS OF RESTRICTIONS AND SPECTRAL
REPRESENTATIONS IN THE E4-SPACE

We consider 4-hyperboloid in the pseudo-Euclidian space E4 with projector
of inner domain P = θ (t2 − r2 − s2), t ∈ R1, r ∈ R3, s2 = const. This projector
and corresponding equations can be examined in the total FT (ω; k) and in the
partial FTs (t |k), (ω|r), (t ; x, y|kz). These different representations reveal various
physical features and therefore the partial FT will be considered in the next Section.

The projector of relativistic (or Einsteinian) causality leads to the equation
of restrictions:

f (t, r) = P
(adv)
RC f (t, r) = θ (t)θ (t2 − r2) f (t, r). (6.1)

This projector is simplified in the 2-D case: P
(adv)
RC (t, x) = θ (t − x)θ (t + x),

and the condition of causality can be rewritten for reduced space by the system of
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equations:

f (t, r) = θ (t − x) f (t, r); (6.2a)

f (t, r) = θ (t + x) f (t, r), (6.2b)

each of which is necessary, but unsufficient for satisfiability of causality condition
requirements. In the 4-D case two equations for f (t, r) with projectors θ (t) and
θ (t2 − r2) can be separately written, i.e. as the system of Kramers-Kronig DRs
and 3-D sampling theorem, but it does not simplify their consideration.

Complete FT of hyperboloid projector was in detail studied in Perel’man
(1966) and on some another base will be written below. It must be only noted
that the FT of complicate projectors required definite cautions as the operators of
transformation over different variables do not commute in general. So the FT of
projector over t , then over space variables and after it in the inverse order lead to
different results (s2 = 0 for simplification):

̂Fk̂Fω[θ (t)θ (t2 − r2)] = 1

2
δ(ω)δ(k) − (1/8π2iωk) ∂k {δ+(ω − k) + δ−(ω − k)} ;

(6.3a)

̂Fω
̂Fk[θ (t)θ (t2 − r2)] = −(1/4π2iωk) ∂k {δ+(ω − k) + δ−(ω − k)} . (6.3b)

These difference still corresponds to the Poincare-Bertrand formulae for
permutation of integration order in singular integrals (e.g. Stein, 1970), therefore
the equations of restriction are in both cases identical.

The projectors of E-p-hyperboloid can be constructed analogically. So, for
the states with positive energy only

f (E, p) = P
(+)
E f (E, p) ≡ θ (E) θ (E2 − p2 − m2) f (E, p). (6.4)

More obvious seems the representation

P
(+)
E (E, p) = θ (E)

∫ ∞

m2
dµ2δ(E2 − p2 − µ2) ≡ 1

(2π )3i

∫ ∞

m2
dµ2�(+)(E,p,µ),

(6.5a)

where �(+)(E,p,µ) is the positive frequence Green function of homogenious
Klein-Gordon equation. It means that DRs based on the axioms of mass-spectrality
and positivity of energy,

f (E, p) = 1

(2π )3i

∫ ∞

m2
dµ2�(+)(E,p,µ)

⊗

E,p
f (E, p), (6.5b)
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represent the set of all “masses” (virtual energies states) admissible by these
axioms with equal probabilities, possible restrictions of its spectrum, the account
of resonances and so on can refine these relations.

The projector of relativistic causality can be considered via analogical con-
struction:

PRC(t, r) = θ (−t)
∫ ∞

0
ds2δ(t2 − r2 − s2) ≡ 1

(2π )3i

∫ ∞

0
ds2 ∇(ret)(t, r, s),

(6.6a)

where ∇(ret)(t, r, s) is the retarded Green function of the reciprocal Klein–Gordon
equation,

{∂2/∂E2 − ∂2/∂p2 − s2)∇(.)(E, p; s) = 0, (6.6b)

determined by the usual Green functions with substitutions (t, r, s) � (E, p,m)
(Perel’man, 1966).

The corresponding DRs would be analogical to (6.5b):

f (t, r) = 1

(2π )3i

∫ ∞

0
ds2∇(ret)(t, r, s)

⊗

t,r
f (t, r). (6.7)

The operator τ = ∂/i∂E and correspondingly the operator −→ρ = i∂/∂p describe
the duration and the space extent of interactions (Perel’man, submitted). Therefore
the physical base of (6.7) can be symbolically represented as

τ 2 − −→ρ 2 = s2, (6.8)

i.e. as the reciprocal one to E2 − p2 = m2, this relation does not determine the
sign of τ . Hence the relativistic DRs can be considered as a set of self-functions of
(6.8) with nonrestricted “4-intervals of interaction” s. Note that operators of (6.8)
types are used at construction of a general kinetic equation but without suggested
interpretation.

It must be here underlined that the relativistic DRs in their retarded form do
not determine the interactions completely. For this purpose are needed also the
relations based on the spectrality of (6.5b) type. Impossibility of theory construc-
tion on the base of only retarded interaction was marked for the first time, as far
as I know, by Einstein in the discussions with Ritz (Ritz and Einstein, 1909).

Note here that the general forms of DRs do not allow complete separation of
real and imaginary parts of response functions and represent the system of integral
equations for them. The single linear relations of the (6.2) type, taken one by one,
can lead to some results, which after must be checked by more complete relations
(Perel’man and Englman, 2000). (Notice that in the article (Perel’man, 1966) we
marked this unsufficientness of the theory suggested in Leontovich (1961) on the
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base of only one equation (6.2), but this suggestion is from time to time repeated,
e.g. Thoma, 2000).

Nevertheless in optical applications some simple approximations to (6.5a)
can be considered. So these DRs are satisfied by the substitution of dielectric
susceptibility: f (ω, k) → ε(ω, k) = ε(ω) + ∑

an(ω)kn; for media with natural
optical activity can be taken that ε(ω, k) ≈ ε(ω) + kα(ω), for non gyrotropic me-
dia ε(ω, k) ≈ ε(ω) + k2β(ω) for which the refined Kramers-Kronig DRs can be
written. It can be taken into account that space dispersion has place in definite
intervals of frequencies only, the form of poles to transparent media can be sug-
gested and so on. But their concrete consideration is sufficiently far from our aims
in this paper.

7. LOCAL AND NONLOCAL INTERACTIONS, TUNNELING

The representation (t |k), i.e. the FT of light cone projector over r, is of form:

P (t |k) ≡ ̂Fk[P (t, r)] = (1/2π )3
∫

dreikrθ (t2 − r2)

= (1/2π2k3){sin(kt) − kt cos(kt)}. (7.1)

At t → ∞ the projector P (t, k) → δ(k), at kt → 0 it is represented by series:

P (t |k) → (1/π2k3)
∞

∑

1

(−1)n+1(kt)2n+1n/(2n + 1)!. (7.2)

The substitution θ (t2 − r2) → θ (t2 − r2 − s2) leads to the same expressions with
t → (t2 − s2)1/2.

At consideration of δ-function of (7.1) all irrelevant terms must be factoring,
hence it will be transformed to δ(tan(kt) − kt). First numerical solutions of the
transcendental equation tan ξ = ξ are equal 0; 4.493; 7.725; . . . (approximately),
in which connection the first zero at t = 0 is of the third order.

As ξmδ(n)(ξ ) = 0 at n ≤ (m − 1), the general solution of the equation of
(3.21) type, i.e. all function converting into zero inside hyperboloids (non-local
functions) are of the kind:

RNL(t |k) = Aδ(P (t |k)) = ϕ0δ(t) + ϕ1δ
′(t) + ϕ2δ

′′(t) +
∑

n

ϕnδ(t − tn) + · · ·

(7.3)

with arbitrary, general speaking, functions ϕn = ϕn(k); all terms of (4.6) apart the
first three, as will be evident below, can be omitted.
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Let’s consider now covariant “quasilocal terms,” FT of which can be added
to (7.3). In the most general form they can be represented as

RqL = a0δ(x2) + a1nµ∂µδ(x2) + a2∂
2
µδ(x2) + · · · , (7.4)

nµ is an arbitrary time-like vector.
At limiting by the first term of (7.4), needed for the Green functions of free

fields, and as in the (t, k)-representation ̂Fk[δ(x2)] = (1/2π2k) sin(k|t |), the argu-
ment of δ-function of (6.4) would be replaced on [(1 + a0k

2) tan(kt) − kt]. So, the
transcendental equation, roots of which determine properties of nonlocal functions,
is slightly varied, but the existence of the main zero at t = 0 is not changed. Other
quasilocal terms can be considered analogously and therefore the main conclu-
sion about instantaneous transferring of excitations by tunneling does not change.
Note here only possibilities of consideration of quasilocal terms in decomposi-
tion of projectors and accordingly in decomposition of response functions. These
problems require further investigations in correlation with experimental data.

Let’s consider some physical effects that can be described by the representa-
tion (7.3).

The first of them is the examination of possibility of non-local phenomena,
i.e. a signal transferring with the faster-then-c speed. The substitution of (7.3)
into the general relation (4.1) shows that such interaction can be transferred only
instantaneously::

FNL(t, r) =
∫

dr′{ϕ0(r − r′) − ϕ1(r − r′)∂/∂t + 1

2
ϕ2(r − r′)∂2/∂t2}I (t, r′).

(7.5)

The instant transfer of these three characteristics is necessary and sufficient for the
complete reestablishment of initial form of signal and its dynamics. Notice that
such transferring does not contradict the common causality.

The peculiarities of such transition can be revealed by consideration of the
energy-momentum representation. The substitution

(t, r, s) � (t, p,m) (7.6)

leads to the projector θ (E2 − p2 − m2) and gives possibility to consider transitions
which go beyond the E-p-hyperboloid, i.e. the tunneling phenomena. In these
variables, with m = 0 for brevity, (7.3) is rewritten for photons tunneling as

Rtunnel(E|r) = A(P (E|r)) = φ0(r)δ(E) + φ1(r)δ′(E) + φ2(r)δ′′(E) + · · · .

(7.7a)

It shows that tunnel transition goes without alteration of energy of photon passing
under barrier. The inverse FT shows that

Rtunnel(t |r) = φ0(r) + t φ1(r) + t2 φ2(r) + · · · . (7.7b)
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i.e. it allows, at t = 0, possibility of the instantaneous tunneling described by the
function φ0(r).

For more precise definition of functions that allow the tunneling, it seems con-
venient to transfer from the variable E to the limiting momentum p0 = (2mE)1/2.
For this case in the expression (6.4) and (7.2) are needed the substitutions k → r,
t → p0 that leads to the response function (7.7) with E → p0. Hence it proves
that at the described conditions tunneling process goes without change of photons
parameters (we do not consider spins in this paper).

For completion of this consideration an estimation of tunneling distance is
needed. For this purpose we consider the projector of jump over distance not less a

at the x-axis: it must include light cones separated onto a distance a at the moment
t = 0:

Pa(t, x) = θ (t2 − x2) + θ (t2 − (x + a)2). (7.8)

Functions described jumping on distances L ≥ a satisfy the condition of
orthogonality:

(1 − Pa(t, x)) fa(t, r) = 0. (7.9a)

The FT of projector in (7.9) over time at x = 0 is

̂Fω[1 − Pa(t, 0)] = (1/2πiω)(1 + eiωa). (7.9b)

Hence the corresponding response function is represented as:

fa(ω, r) = ψ(ω, r) ω δ(1 + eiωa). (7.10)

The zeros of δ-function’s argument are located at ωa = π (2n − 1), n = 1, 2, . . .

and correspondingly distances of instantaneous jumps are proportional to halfwave
lengths: a = 1

2λ(2n − 1), i.e. they exceed, even at n = 1, the value of uncertainty
(�x�k ≥ 1

2 ,) and therefore must be measurable.
If considered process is determined by difference with energy of stable (or

resonant) state �ω = ω − ω0, the operation of subtraction becomes needed:

fa(ω|r) − fa(ω0|r) → fa(�ω|r). (7.11)

With this substituon we receive that the distance of instantaneous tunneling is
equal

a = (π/�ω)(2n − 1), n = 1, 2, 3, . . . , (7.12a)

which just corresponds to experimental data (Chiao and Steinberg, 1998; Milonni,
2002; Nimtz, 1997; Nimtz and Heitman, 1997; Recami, 2001; Steinberg, 2002) at
n = 1.
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Thus these considerations prove

Theorem 10. Superluminal transfer of excitations (jumps) through a linear pas-
sive substance can be affected by nothing but by the instantaneous tunneling of
virtual particles; the tunneling distance is of order of a half wavelength corre-
sponding to the deficiency in the energy relative to the nearest stable (resonance)
state.

Hence the condition of the theorem can be expressed in a form similar to the
uncertainty principle:

a�ω = π (7.12b)

and really such expression is proven also via the uncertainty considerations by the
use of projectors features (Perel’man, submitted).

It is proved in addition that the nonlocality of electromagnetic field must be
described by the 4-potential Aµ, but the fields E and B remain unconnected within
the near field.

Notice also such formal possibility of interpretation of “superluminal” transi-
tions. By the analogy with (6.5a) the projector of external part of E-p-hyperboloid
can be represented via the propagators of Klein-Gordon equation, e.g.

Pω<k(ω, k) = θ (−k2) =
∫ ∞

0
dµ2δ(ω2 − k2 + µ2) = 2π

∫ ∞

0
dµ2�1(ω, k, iµ),

(7.13)

but with an imaginary mass. It leads to DRs of (6.5b) type for such “superluminal”
particles:

ftach(x) = 2π

∫ ∞

0
dµ2

∫

d4y�1(x − y, iµ) ftach(y). (7.14)

Hence it describes the “superluminal” transfer by introduction of tachions
with an imaginary mass (e.g. Feinberg, 1967; Recami and Mignani, 1974 and
references therein.). In the sharp distinctions with our consideration such de-
scription allows nonlocal interaction at any distance, which contradicts all known
experimental data and must be thetefore omitted.

Let’s consider for completeness of picture the condition of orthogonality
PNL(t |r) fL(t |r) = 0.

The (ω|r)-representation of the general projector of nonlocality

PNL(ω|r) = 1

2π

∫ ∞

−∞
dt θ (R2 − t2)e−iωt = δ(ω) − sin(ωR)/πω, (7.15)
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where R2 = r2 + s2. It leads at ω �= 0 to the representation of local functions:

fL(ω|r) = φ(ω|r) δ(sin(ωR)/πω) = πφ(ω|r)
∞

∑

1

δ(ω − πn/R). (7.16)

This representation shows that the contact interaction with R → 0 of merging
particles is possible at ω → ∞ only, hence confluent particles must be reduced
into another state, into another particle.

In classical theory at fixed distance R between emitter and receiver (7.16)
shows that they regularly interact by standing waves only. In quantum theory the
impossibility of exact fixation of positions would softening such resonance of
interactions.

8. NONRELATIVISTIC PROCESSES: SCHRÖDINGER EQUATION

Let’s consider the introduction of such artificial “property.” All scattering
processes on a fixed point-like force center of arbitrary nature can be divided onto
two kinematically isolated groups: events or processes, in the course of which total
energy always bigger than kinetic energy, and such events or processes, at which
kinetic energy can become bigger the total one (they include captures, reflections
or backward scattering; tunneling).

We shall begin with a more simple dividing. If the total energy is precisely
divided on kinetic and potential parts, i.e. E = p2/2m + V and, as a modelling
example, the potential V is constant, the pointed equation of restrictions can be
presented:

ψ(E, p) = q(E, p) δ(E − p2/2m − V ). (8.1)

with arbitrary function q(E, p) nonsingular at poles of δ-function. Its FT,

ψ(t, r) =
∫

dEdp q(E, p) δ(E − p2/2m − V ) exp i(pr − Et), (8.2a)

satisfies the differential equation

(i∂t − ∇2/2m − V ) ψ(t, r) = 0, (8.2b)

which with specification of potential V → V (r, . . . ) directly leads to the
Schrödinger equation.

Now we turn to more general cases. If the total energy of single scattering
particle is bigger than kinetic energy during the process, the state is described by
the equation of restriction:

ψ(t, r) = θ (E − p2/2m) ψ(t, r). (8.3)
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The FT of this projector over all (3 + 1) variables

PE(t, r) = 1

2
δ(t)δ(r) − m3/2(2πt)−5/2 exp(imr2/2t + iπ/4) (8.4)

and can be rewritten via the Green function (propagator) of the Schrödinger
equation,

g(t, r) = 2πα0

( m

iht

)3/2
exp

(

imr2

2ht

)

, (8.5)

as

P1(t, r) = 1

2

(

δ(t)δ(r) − 1

2πt
g(t, r)eiπ/4

)

≡ 1

2
[δ(x) − α0K(x)], (8.6)

where x = (t, r) and the complete numerical parameter is singled out:

α0 = 2(2π )−5/2 = 1/49.48 · · · ≈ 1/50. (8.7)

As must be underlined, the numerical value of (8.7) evidently depends on the
number d of space dimensions only: α0(d) = 1/π (2π )d/2; the exponent in (8.5)
contains the elementary action function in the h units.

The processes with surplus energy non-passing through tunneling are de-
scribed by response functions satisfying the DRs

fE(t, r) = −α0m
3/2eiπ/4

∫

dτd−→ρ fE(t − τ, r − −→ρ ) τ−5/2 exp(imρ2/2τ ).

(8.8)

The kernel of (8.8) has evident singularity at τ → 0 characterizing lesser
probability of temporal delays in processes of such energies. More compactly these
DRs can be rewritten via nondimensional magnitudes with the Compton wave-
length λC = h/mc: relative rapidity u = λC/cτ and relative length κ = ρ/λC

as

fE(t, r) = α0

∫

dudκ fE(t − λC/uc, r − λCκ) u1/2 exp

(

1

2
iκ2u

)

. (8.9)

It seems very perspective, although it is very venturesome, to suggest that
exactly this α0 can be examined as a candidate on the role of the universal bare
constant of SUSY. Preliminary in the favour of such hypothesis can be advanced
such reasons: this numerical value is the consequence of conservation laws only,
i.e. of kinematics, it appears beyond specification of interaction types and depends
only on the space dimensions; in the construction of multiple DRs, the complicated
matrix elements of (3.30)-type describing more than one interactions should be
proportional to corresponding degrees of α0. But with or without such conjectures
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all perspectives must be examined by a direct comparison with the existing field
theory and by estimations of basic magnitudes.

Let’s begin with a “naive” estimation of charges renormalization “constants”
(more correctly, numerical values of running functions of renormalization at defi-
nite energies) via the numerical value of α0. For renormalization of strong charge
to mZ energy with the experimental value αs(mZ) = 0.12 (Hagiwara, 2002) it
gives

Z2
s (mZ) = α0/αs(mZ) ≈ 49.48/8.33 ∼ 6. (8.10a)

For renormalization of electric charge to atomic magnitude it leads to an
estimation:

Z2
e (me) = α0/α = 49.48/137 ≈ 0.361 ∼ 2−3/2, (8.10b)

and for weak interaction, correspondingly (Weinberg, 1998); θW is the running
Weinberg angle),

Z2
w = α0/αw = α0/α(mZ) cos2 θW ∼ 0.29. (8.10c)

More consecutively α0 and one from the known experimental values: αs(mZ),
αe(mZ) or sin2 θW can be taken as the input to estimate other parameters via the
generalized Gell-Mann - Low relations (Gell-Mann and Low, 1954):

1/α0 − 1/αk = (βk/2π ) ln(M/mk), (8.11)

where αk are the running couplings, k = e, s, w; for the case of elec-
tromagnetic interactions αe = α(mZ) sin2 θW (mZ); at weak interactions αw =
(3/5)α(mZ) cos2 θW (mZ) and 1/α0 must be factorized on 3/5. In the one-loop
approximation with omitting contributions from scalar bosons and so on (e.g.
Weinberg, 2000) with suggestion of only three lepton families {βs ; βe; βw} =
{7; 10/3; −4}. (Note that although β-functions are calculated till 8-th order
(Nigam, 1999), for our qualitative estimations the lowest order seems sufficient.)

With the most accurately measured 1/αe(mZ) = 129 and sin2 θW = 0.231 it
leads to M0 = 1018 GeV that is only twice bigger the value defined in Binger and
Brodsky. But, as must be noted, for the proton lifetime, τp ∼ M4

0 /α2
0m

5
p, these

values lead to a non-contradict estimation: τp ∼ 3.5 · 1033 yrs.
The most problematic in (8.11) are values of beta-functions that depend

on inclusion of different types of Higgs particles and symmetries partners into
theory. For partial analysis of such possibilities can be used relations that follow
the system (8.11):

βe(1/α0 − 1/αs) = βs(1/α0 − 1/αe); (8.12)

βw(1/α0 − 1/αs) = βs(3/5α0 − 1/αw). (8.13)
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From the expression (8.12) with βs = 7 and with the experimental values
α′

e = αe(mZ) sin2 θW = 1/29.8 and αs = 0.12 follows βe = 3.34 in the excellent
agreement with the one-loop approximation, without inclusion of additional par-
ticles.

But the relation (8.13) at such conditions results in βw = −5.1, markedly
different from the one-loop value −4. The corresponding value of ratio (βw/βe) =
−3/2 indicates also on the restricted electroweak unification or on the dynami-
cal breaking of electroweak symmetry. (Such discrepancy can be connected, in
principle, with our initial restriction (8.3), regarding, generally speaking, stable
systems only.)

The including of all supersymmetry partners of quarks, leptons, gauge and
Higgs bosons (Peskin) results in the system {βs ; βe; βw}′ = {3,−1,−33/5}. But
such values lead to too unreasonable magnitude M ′

0 of order 1039 GeV. This
discrepancy can indicate on significant excess of frequently considered supersym-
metry partners (there are other possibilities for estimation of beta-functions, see
e.g. Terning).

More scrupulous calculations of beta-functions, with taking into account
many-loops corrections and/or different variants of SUSY, will shift values of all
beta-functions and can lead to refinements of mass spectra of MSSM. Note that
the including of scalar particles and so on in all scheme (8.11) (Weinberg, 2000)
can essentially decrease corresponding values and leads to discrepancy between
involved magnitudes. Here it can be assumed that an existence of these additional
particles, Higgs bosons and others, must be more carefully examined in the weak
interaction relating to bigger masses of intermediate bosons.

The calculated value of M0 is very close to the Planck mass MPl =
(8πGN )−1/2 = 2.4 · 1018 GeV with the Newtonian constant GN and the non-
dimensional gravitation constant GNM2

0 /hc ≈ 1/149 ≈ α0/3. It possibly indi-
cates that at the unification limit GN → G0 ≈ 3GN , which is of order of elec-
tromagnetic and weak interactions renormalization (cf., e.g. Binetruy). This
renormalization must be taken into account as possibility of some changes of
Planck units in

√
3 fold, especially at estimations of black holes characteristics.

Note that the value (8.13) is deduced without any assumptions of SUSY, but it
can be considered as an argument in favor of some unification of supergravity
type.

Let’s consider now possibilities of evaluating of masses of some stable par-
ticles via the magnitudes of α0 and M0.

The change (generation) of mass �mk by vacuum polarization is expressed
as

�mk/mk = −(α0bk/2π ) ln(M0/mk), (8.14)
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where the mass coefficients in the minimal SU(5) theory (Georgi and Glashow,
1974) are determined in the one-loop approximation (Cheng and Li, 1984) as
{bs ; be; bw} = {−8; −9/2; −9/10}.

The right side of (8.14) is equal to 1.07 for strong interactions with
the nucleon mass. It allows to assert that the all observed mass of nucleon is
of the pure field-born source. For electromagnetic interactions with electron mass
the right side gives 0.71 that is of the specific order. The evident discrepancy can
be connected with restricted calculations over the lowest order.

All these results require further examination, but they can point a perspective
way for continuation of this approach.

9. CONCLUSIONS

The carried out considerations are such. On the one hand their purposes
consisted in developing the general theory, which would allow the formal, i.e.
in the mathematically strict form, description of some qualitative properties of
physical systems. On the other hand there are some concrete problems of theory
that must be investigated in the maximally general representation.

Let us briefly enumerate these considerations and their results.

1. Alternative properties of physical systems characterized by restricted sup-
ports of response functions are expressed in the form of equations of re-
striction, which by integral transformations lead to convolution equations,
considered as spectral representations and dispersion relations. It allows
their establishment beyond analyses of analyticity. This approach is natu-
rally applied to functions of many variables with more complicated set of
supports.

The offered approach can be described as the chain of consecutive
isomorphic transitions: property → support of parameters → projector
→ equation of restriction → spectral representation.

2. The general possibility of DRs in weak topology corresponding to sym-
metries of systems is mentioned.

3. The partial FT of equations of restriction over different set of variables
can reveal various features of response functions.

4. The interrelations between DRs and equations of motion are established in
the general form: strict detachment of admissible parameters → projector
of this domain, usually of lower dimensions → equation of motion →
Green function → integration over domain corresponding to the descrip-
tion of property.

5. On this base, as the examples of general theory, the different establish-
ments of Kramers-Kronig DRs, including the relation for indices of refrac-



Properties of Physical Systems and Projectors 1305

tion, and sampling theorems are considered. The systems of nonrelativistic
many-particle DRs with their approximate forms are written out.

6. The relativistic one-particle DRs are established and some their features
are considered (relativistic many particles DR are established on this base
in Perel’man, 1969). Such generalization of the Kramers-Kronig relations
corresponds to reciprocal Klein-Gordon equation describing duration and
space extent of interaction. These DRs can be used for description of the
space dispersion also.

7. The analyses of these DRs demonstrate the possibility of instantaneous
transferring of excitations in the strict limits that are close, but slightly
bigger the uncertainty principles values and therefore are measurable.

8. The nonrelativistic DRs for one-particle scattering on the fixed point-like
center are established by pure kinematical considerations, independent
from the type of interaction. This DR is characterized by the single nu-
merical factor and it seems very desirable to consider it onto the role of
the universal bare charge of SUSY and so on. The estimations of charges
renormalization and masses variability on its base encourages to such
possibilities, i.e. demonstrates perspectives of such approach, on the base
of kinematics as the most general theory.

9. The comparison of (6.3a) and (6.3b) factually proves the Poincare-
Bertrand theorem regulating permutation of integration order in singular
integrals. It seems evident that the suggested method with functions of
many variables leads to several generalizations of this theorem.

In the whole we can conclude that the discussion of properties of physical
systems on the base of projectors represent a peculiar terra incognita or almost
incognita. It requires and deserves more complete and careful further researches.

ACKNOWLEDGMENTS

I am deeply indebted to discussions with V. V. Chavchanidze, R. Englman,
V. Ya. Fainberg, S. Elitzur, I. N. Kartsivadze, M. A. Leontovich, S. G. Matinyan,
I. I. Royzen, G. M. Rubinstein, A. D. Sakharov, M. Salukvadze on different years
of these investigations.

REFERENCES

Altarelli, M. and Smith, D. Y. (1974). Physical Review B 9, 1290.
Altarelli, M., Dexter, D. L., Nussenzveig, H. M., and Smith, D. Y. (1972). Physical Review B 6, 4502.
Binetruy, P., arXiv: hep-ph/0005037.
Binger, M. and Brodsky, S. J., arXiv: hep-ph/0310322.
Bogoliubov, N. N. and Shirkov, D. V. (1980). Introduction to the Theory of Quantized Fields, 3rd Ed.,

Wiley.



1306 Perel’man

Cheng, T.-P. and Li, L.-F. (1984). Gauge Theory of Elementary Particle Physics, Clarendon Press.
Chiao, R. Y. and Steinberg, A. M. (1998). Physica Scripta T 76, 61.
Deans, S. R. (1983). The Radon Transform and Some of Its Applications, John Wiley, NY.
Dirac, P. A. M. (1964). Lectures on Quantum Mechanics, Yeshiva University, NY.
Feinberg, G. (1967). Physical Review 159, 1089.
Gel’fand, I. M., Graev, M. I., and Pyatezkii-Schapiro, I. I. (1962). Generalized Functions. V (Integral

Geometry and Connected Group Representations), Moscow.
Gell-Mann, M. and Low, F. (1954). Physical Review 95, 1300.
Georgi, H. and Glashow, S. L. (1974). Physical Review Letters 32, 438.
Hagiwara, K. e. a. (2002). Physical Review D 66, 010001.
Jerri, A. J. (1977). Proceedings of the IEEE, 65, 1565.
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